Page 1 of 1

### some assistance required

Posted: August 20th, 2006, 8:00 pm
hello,
i have recently become interested in folding my own modular 60 degree unit bu francis ow and saw that you must have sheets of 1x3 paper so my question is..

is there any trick to fold a peice of 1x1 paper into 3 equal parts w/o much guess work?

Posted: August 20th, 2006, 9:14 pm
First fold half, than main diagonal and then how is shown on the picture. The marked spot is in 1/3 of the paper.

Posted: August 20th, 2006, 10:05 pm
thank you soo much

Posted: August 21st, 2006, 9:07 am
And to divide in 5 equal parts?

thk.
Giro

Posted: August 21st, 2006, 10:20 am
[img]http://img301.imageshack.us/img301/4923/fifthvb9.png[/img]

In general, you can divide the paper into N+1 parts by:

1) Dividing it into N parts along the left edge
2) Making a crease from the bottom right corner to a distance 1/N up the left edge
3) Making the diagonal crease from the bottom left to the top right.
4) The point where these two creases intersect is a distance of 1/(N+1) from both the left and bottom edges.

Algebraicaly you can prove this because the creases form the lines y=x and y= (1 - x)/N. These intersect at the point {1/(N+1), 1/(N+1)}.

Posted: August 21st, 2006, 1:37 pm